Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
1.
Food Chem ; 451: 139493, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38703728

ABSTRACT

Iron chelating peptides have been widely utilized as iron supplements due to their excellent absorption capacity, However, the high cost and cumbersome manufacturing process of these peptides significantly limit their industrial application. In this study, fermentation was used for the first time to prepare iron chelating peptides. Bacillus altitudinis 3*1-3 was selected as the most suitable strain from 50 strains. The hydrolysates of fermented scallop skirts showed excellent iron-chelating capacity (9.39 mg/g). Aspartic acid, glutamic acid, and histidine are crucial for the binding of peptides to ferrous ions. The heptapeptide (FEDPEFE) forms six binding bonds with ferrous irons. Compared with ferrous sulfate, peptide-ferrous chelate showed more stability in salt solution and simulated gastrointestinal juice (p < 0.05). Furthermore, the fermentation method could save >50% of the cost compared with the enzymatic method. The results can provide a theoretical basis for the preparation of ferrous-chelated peptides using the fermentation method.

2.
Int J Biol Macromol ; 267(Pt 1): 131584, 2024 May.
Article in English | MEDLINE | ID: mdl-38615856

ABSTRACT

Heterocyclic aromatic amines (HAAs) are the main carcinogens produced during thermal processing of protein-rich foods. In this paper, a composite aerogel (TOCNFCa) with a stabilized dual-network structure was prepared via a template for the in-situ synthesis of UiO-66 on cellulose for the adsorption of HAAs in food. The dual-network structure of TOCNFCa provides the composite aerogel with excellent wet strength, maintaining excellent compressive properties. With the in-situ grown UiO-66 content up to 71.89 wt%, the hierarchical porosity endowed TOCNFCa@UiO-66 with the ability to rapidly adsorb HAAs molecules with high capacity (1.44-5.82 µmol/g). Based on excellent thermal stability, adsorption capacity and anti-interference, TOCNFCa@UiO-66 achieved satisfactory recoveries of HAAs in the boiled marinade, which is faster and more economical than the conventional SPE method. Moreover, TOCNFCa@UiO-66 could maintain 84.55 % of the initial adsorption capacity after 5 times of reuse.


Subject(s)
Amines , Cellulose , Heterocyclic Compounds , Metal-Organic Frameworks , Nanofibers , Phthalic Acids , Cellulose/chemistry , Adsorption , Amines/chemistry , Nanofibers/chemistry , Metal-Organic Frameworks/chemistry , Heterocyclic Compounds/chemistry , Gels/chemistry , Porosity
3.
Food Funct ; 15(9): 4741-4762, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38629635

ABSTRACT

In the contemporary era, heightened emphasis on health and safety has emerged as a paramount concern among individuals with food. The concepts of "natural" and "green" have progressively asserted dominance in the food consumption market. Consequently, through continuous exploration and development, an escalating array of natural bioactive ingredients is finding application in both nutrition delivery and the broader food industry. Chlorogenic acid (CGA), a polyphenolic compound widely distributed in various plants in nature, has garnered significant attention. Abundant research underscores CGA's robust biological activity, showcasing notable preventive and therapeutic efficacy across diverse diseases. This article commences with a comprehensive overview, summarizing the dietary sources and primary biological activities of CGA. These encompass antioxidant, anti-inflammatory, antibacterial, anti-cancer, and neuroprotective activities. Next, a comprehensive overview of the current research on nutrient delivery systems incorporating CGA is provided. This exploration encompasses nanoparticle, liposome, hydrogel, and emulsion delivery systems. Additionally, the article explores the latest applications of CGA in the food industry. Serving as a cutting-edge theoretical foundation, this paper contributes to the design and development of CGA in the realms of nutrition delivery and the food industry. Finally, the article presents informed speculations and considerations for the future development of CGA.


Subject(s)
Chlorogenic Acid , Food Industry , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Humans , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Drug Delivery Systems/methods
4.
Nutrients ; 16(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38613052

ABSTRACT

Memory impairment is a serious problem with organismal aging and increased social pressure. The tetrapeptide Ala-Phe-Phe-Pro (AFFP) is a synthetic analogue of Antarctic krill derived from the memory-improving Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) after digestion and absorption. The objective of this research was to assess the neuroprotective effects of AFFP by reducing oxidative stress and controlling lipid metabolism in the brains of mice with memory impairment caused by scopolamine. The 1H Nuclear magnetic resonance spectroscopy results showed that AFFP had three active hydrogen sites that could contribute to its antioxidant properties. The findings from in vivo tests demonstrated that AFFP greatly enhanced the mice's behavioral performance in the passive avoidance, novel object recognition, and eight-arm maze experiments. AFFP reduced oxidative stress by enhancing superoxide dismutase activity and malondialdehyde levels in mice serum, thereby decreasing reactive oxygen species level in the mice hippocampus. In addition, AFFP increased the unsaturated lipid content to balance the unsaturated lipid level against the neurotoxicity of the mice hippocampus. Our findings suggest that AFFP emerges as a potential dietary intervention for the prevention of memory impairment disorders.


Subject(s)
Dipeptides , Euphausiacea , Animals , Mice , Lipid Metabolism , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/prevention & control , Scopolamine Derivatives , Hippocampus , Lipids
5.
Food Chem ; 448: 139167, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38574718

ABSTRACT

Cyclodextrin-based metal-organic framework (CD-MOF) has been widely used in various delivery systems due to its excellent edibility and high drug loading capacity. However, its typically bulky size and high brittleness in aqueous solutions pose significant challenges for practical applications. Here, we proposed an ultrasonic-assisted method for rapid synthesis of uniformly-sized nanoscale CD-MOF, followed by its hydrophobic modification through ester bond cross-linking (Nano-CMOF). Proper ultrasound treatment effectively reduced particle size to nanoscale (393.14 nm). Notably, carbonate ester cross-linking method significantly improved water stability without altering its cubic shape and high porosity (1.3 cm3/g), resulting in a retention rate exceeding 90% in various media. Furthermore, the loading of quercetin did not disrupt cubic structure and showcased remarkable storage stability. Nano-CMOF achieved controlled release of quercetin in both aqueous environments and digestion. Additionally, Nano-CMOF demonstrated exceptional antioxidant (free radical scavenging 82.27%) and biocompatibility, indicating its significant potential as novel nutritional delivery systems in food and biomedical fields.


Subject(s)
Cyclodextrins , Delayed-Action Preparations , Drug Carriers , Hydrophobic and Hydrophilic Interactions , Metal-Organic Frameworks , Quercetin , Quercetin/chemistry , Metal-Organic Frameworks/chemistry , Cyclodextrins/chemistry , Drug Carriers/chemistry , Delayed-Action Preparations/chemistry , Nanoparticles/chemistry , Biocompatible Materials/chemistry , Particle Size , Humans , Drug Stability
6.
J Agric Food Chem ; 72(15): 8491-8505, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38587859

ABSTRACT

Aging and stress have contributed to the development of memory disorders. Phe-Pro-Phe (FPF) was identified with high stability by mass spectrometry from simulated gastrointestinal digestion and everted gut sac products of the Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) which was found to have a positive impact on memory enhancement. This study investigated the digestive stability, absorption, and memory-enhancing effects of FPF using nuclear magnetic resonance spectroscopy, simulated gastrointestinal digestion, in vivo fluorescence distribution analysis, mouse behavioral experiments, acetylcholine function, Nissl staining, immunofluorescence, and immunohistochemistry. FPF crossed the blood-brain barrier into the brain after digestion, significantly reduced shock time, working memory errors, and reference memory errors, and increased the recognition index. Additionally, FPF elevated ACh content; Nissl body counts; and CREB, SYN, and PSD-95 expression levels, while reducing AChE activity (P < 0.05). This implies that FPF prevents scopolamine-induced memory impairment and provides a basis for future research on memory disorders.


Subject(s)
Euphausiacea , Animals , Mice , Amino Acid Sequence , Peptides/chemistry , Acetylcholine , Memory Disorders
7.
Food Chem ; 449: 139225, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38599107

ABSTRACT

Heterocyclic aromatic amines (HAAs), arising as chemical derivatives during the high-temperature culinary treatment of proteinaceous comestibles, exhibit notable carcinogenic potential. In this paper, a composite aerogel (AGD-UiO-66) with high-capacity and fast adsorption of HAAs was made with anchoring defective UiO-66 (D-UiO-66) mediated by lauric acid on the backbone of cellulose nanofibers (CNF). AGD-UiO-66 with hierarchical porosity reduced the mass transfer efficiency for the adsorption of HAAs and achieved high adsorption amount (0.84-1.05 µmol/g) and fast adsorption (15 min). The isothermal adsorption model demonstrated that AGD-UiO-66 belonged to a multilayer adsorption mechanism for HAAs. Furthermore, AGD-UiO-66 was successfully used to adsorb 12 HAAs in different food (roasted beef, roasted pork, roasted salmon and marinade) with high recoveries of 94.65%-104.43%. The intrinsic potential of AGD-UiO-66 demonstrated that it could be widely applicable to the adsorption of HAAs in foods.


Subject(s)
Amines , Cellulose , Nanocomposites , Adsorption , Amines/chemistry , Cellulose/chemistry , Animals , Nanocomposites/chemistry , Heterocyclic Compounds/chemistry , Cattle , Swine , Salmon , Metal-Organic Frameworks/chemistry , Meat/analysis , Food Contamination/analysis , Gels/chemistry
8.
Food Chem X ; 22: 101260, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38450386

ABSTRACT

Salidroside (Sal), the main bioactive substance in Rhodiola rosea, is a promising functional food component with a wide range of pharmacological effects, but its biological activity is challenging to sustain due to its short half-life, low oral bioavailability, and susceptibility to environmental factors. The aim of this study was to investigate the effect of sodium alginate (SA) concentration on the construction of W/O/W emulsion in the protection of Sal. With the escalation of SA concentrations, the range of droplet size distribution was smaller and the droplets were more uniform. When the concentration of SA was 2 %, the average droplet size reached 9.1 ± 0.1 µm, and the encapsulation efficiency of Sal was 77.8 ± 1.8 %. Moreover, the double emulsion with 2 % SA was the most stable for 28 days at 4 °C since the oil droplets were embedded in the network structure of SA.

9.
J Agric Food Chem ; 72(14): 7933-7942, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38546719

ABSTRACT

Ethanol (EtOH) has been identified as a potential pathogenic factor in gastric ulcer development primarily due to its association with gastric injury and excessive production of reactive oxygen species. Magnolol (Mag), the principal active compound in Magnolia officinalis extract, is well studied for its notable anti-inflammatory and antioxidant properties. However, its limited solubility, propensity for agglomeration, and low absorption and utilization rates significantly restrict its therapeutic use. This study aims to overcome these challenges by developing a Mag nanoparticle system targeting the treatment and prevention of EtOH-induced gastric ulcers in mice. Utilizing a click chemistry approach, we successfully synthesized this system by reacting thiolated bovine serum albumin (BSA·SH) with Mag. The in vitro analysis revealed effective uptake of the BSA·SH-Mag nanoparticle system by human gastric epithelial cells (GES-1), showcasing its antioxidant and anti-inflammatory capabilities. Additionally, BSA·SH-Mag exhibited gradual disintegration and release in simulated gastric fluid, resulting in a notable reduction of oxidative stress in gastric tissues and mucosal tissue repair and effectively reducing inflammatory expression. Furthermore, BSA·SH-Mag attenuated EtOH-induced gastric inflammation by decreasing the level of NOX4 protein expression and augmenting the level of Nrf2 protein expression. In conclusion, our findings indicate that BSA·SH-Mag represents a promising candidate as an oral therapeutic for gastric ulcer treatment.


Subject(s)
Biphenyl Compounds , Lignans , Nanoparticles , Stomach Ulcer , Mice , Humans , Animals , Ethanol/adverse effects , Ethanol/metabolism , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Antioxidants/metabolism , Anti-Inflammatory Agents/pharmacology , Gastric Mucosa/metabolism
11.
Food Chem ; 444: 138527, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38309080

ABSTRACT

Traditional pressing is of low efficiency (< 80 %). A highly efficient sesame oil extraction technique was discovered via micro-hydration of sesame paste (φ = ∼ 75 %) and then agitation with a yield of âˆ¼ 95 %. However, the extraction mechanism is still unknown. To uncover this, microscopic imaging was used, and it found that agitation progressively increased the droplet size of micro-hydrated paste (φ = 74.5 %) from an initial size of < 4 µm. As agitated for 20 min, almost 85 % (v/v) of oil was over 20 µm, which was linearly and positively correlated (R2 > 0.96) with oil yield. Increase in droplet size was due to droplet compression, film rupture, and droplet coalescence. The coalescence frequency based on agitation time followed an exponent curve (R2 > 0.97). This coalescence might be related to the decreased water relaxation time and increased paste viscosity. This study, for the first time, found the oil droplet coalescence in hydrated sesame paste (φ = 74.5 %) during agitation, thereby successfully extracting oil at room temperature. The findings of this work can be a starting point for research on micro-hydration extraction for oil-containing materials from a packing density of oil droplets point view.


Subject(s)
Sesamum , Sesame Oil , Chemical Phenomena , Viscosity
12.
Food Chem ; 443: 138534, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38320377

ABSTRACT

This study employed gas chromatography-mass spectrometry with olfactory (GC-MS-O) and multi-omics methods to investigate the changes in volatile flavor compounds during the freezing process of Pacific chub mackerel (Scomber japonicus) from Japan and China, and Spanish mackerel (Scomberomorus niphonius). A total of 18 volatile flavor compounds were identified, and significant differences in volatile flavor components were observed among samples frozen for 1 week, 1 year, and 2 years. The results of the Partial least squares regression (PLSR) indicated that the fishy odor was correlated with independent variables such as fatty acids (FA 22:4, FA 28:6, FA 24:4), differentially expressed genes (Gene.2425 (NDUFA5), Gene.38 (GPX1), and Gene.2844 (DAD1)). Classification and regression tree (CART) analysis revealed that the peak area values of fatty acids (FA 22:5, FA 20:4) and fatty acid esters of hydroxy fatty acids (FAHFA 18:0/22:3) were the main differentiating factors for fishy odor perception.


Subject(s)
Cyprinidae , Perciformes , Volatile Organic Compounds , Animals , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Freezing , Multiomics , Perciformes/genetics , Fatty Acids , Volatile Organic Compounds/analysis
13.
Int J Biol Macromol ; 260(Pt 1): 129418, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232880

ABSTRACT

Cod proteins (CPs) have potential applications in designing desirable gel-based products, and this study aimed to unravel their heat-induced aggregation pattern and further probe the roles in protein gels. SDS-PAGE analysis indicated that high-precipitation-coefficient aggregates (HPCAs) of CPs aggregates were composed of considerable polymers of myosin heavy chains and actin, and their low-precipitation-coefficient aggregates (LPCAs) contained myosin light chains and tropomyosin. Studies from correlation analysis between the structure and aggregation kinetics revealed that the generation of ß-sheet and SS bonds were responsible for their spontaneous thermal aggregation induced by heating temperature and protein concentration, respectively. Additionally, as protein denaturation ratio increased, more and larger HPCAs were formed, which was evidenced driving the network formation of protein gels and resulting in higher storage modulus (G') values. These novel findings may be applicable to other animal proteins for better tailoring the manufacturing of muscle gel-based products.


Subject(s)
Hot Temperature , Water , Animals , Actins , Gels/chemistry
14.
Toxins (Basel) ; 16(1)2024 01 09.
Article in English | MEDLINE | ID: mdl-38251251

ABSTRACT

Colchicine, a natural compound extracted from Colchicum autumnale, is a phytotoxin, but interestingly, it also has multiple pharmacological activities. Clinically, colchicine is widely used for the treatment of gouty arthritis, familial Mediterranean fever, cardiovascular dysfunction and new coronary pneumonia. However, overdose intake of colchicine could cause lethal liver damage, which is a limitation of its application. Therefore, exploring the potential mechanism of colchicine-induced hepatotoxicity is meaningful. Interestingly, it was found that CYP1A1 played an important role in the hepatotoxicity of colchicine, while it might also participate in its metabolism. Inhibition of CYP1A1 could alleviate oxidative stress and pyroptosis in the liver upon colchicine treatment. By regulating CYP1A1 through the CASPASE-1-GSDMD pathway, colchicine-induced liver injury was effectively relieved in a mouse model. In summary, we concluded that CYP1A1 may be a potential target, and the inhibition of CYP1A1 alleviates colchicine-induced liver injury through pyroptosis regulated by the CASPASE-1-GSDMD pathway.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Colchicine , Animals , Mice , Colchicine/toxicity , Cytochrome P-450 CYP1A1/genetics , Oxidative Stress , Caspase 1
15.
Int J Biol Macromol ; 260(Pt 1): 129435, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228205

ABSTRACT

Caulerpa lentillifera polysaccharide (CLP) has been characterized as a sulfated polysaccharide which can effectively inhibit lipid digestion. However, little information was known regarding its inhibitory mechanisms. In the present study, desulfation and degradation were conducted to prepare the derivatives of CLP, and a series of chemical and spectroscopic methods were used to elucidate the structure-activity relationship of CLP on the inhibitory effect of lipid digestion. Results revealed that CLP possessed excellent binding capacities for sodium cholate, sodium glycocholate, and sodium taurocholate. In addition, CLP can effectively inhibit lipase activity by quenching the fluorescence intensity, changing the secondary structure, and decreasing the UV-Vis absorbance. Of note, sulfate groups in CLP took a vital role in inhibiting lipase activity, while the molecular weight of CLP showed a positive correlation with the binding activities of bile acids. Furthermore, adding CLP into the whey protein isolate (WPI) emulsion system also impeded lipid digestion, indicating that CLP can be a potential reduced-fat nutraceutical used in food emulsion systems.


Subject(s)
Caulerpa , Edible Seaweeds , Lipids , Polysaccharides , Emulsions , Polysaccharides/chemistry , Structure-Activity Relationship , Digestion , Lipase
16.
Anal Chem ; 96(5): 2008-2021, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38276876

ABSTRACT

Nontargeted lipidomics using liquid chromatography-tandem mass spectrometry can detect thousands of molecules in biological samples. However, the annotation of unknown oxidized lipids is limited to the structures present in libraries, restricting the analysis and interpretation of experimental data. Here, we describe Doxlipid, a computational tool for oxidized lipid annotation that predicts a dynamic MS/MS library for every experiment. Doxlipid integrates three key simulation algorithms to predict libraries and covers 32 subclasses of oxidized lipids from the three main classes. In the evaluation, Doxlipid achieves very high prediction and characterization performance and outperforms the current oxidized lipid annotation methods. Doxlipid, combined with a molecular network, further annotates unknown chemical analogs in the same reaction or pathway. We demonstrate the broad utility of Doxlipid by analyzing oxidized lipids in ferroptosis hepatocellular carcinoma, tissue samples, and other biological samples, substantially advancing the discovery of biological pathways at the trace oxidized lipid level.


Subject(s)
Lipids , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Lipids/analysis , Chromatography, Liquid/methods , Algorithms , Computer Simulation
17.
Int J Biol Macromol ; 257(Pt 1): 128652, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38065454

ABSTRACT

Pickering high internal phase emulsions (HIPEs) have gained significant attention for various applications within the food industry. Yeast cell protein (YCP), derived from spent brewer's yeast, stands out as a preferred stabilizing agent due to its cost-effectiveness, abundance, and safety profile. However, challenges persist in utilizing YCP, notably its instability under high salt concentration, thermal processing, and proximity to its isoelectric point. This study aimed to enhance YCP's emulsifying properties through glycation with glucose and evaluate its efficacy as a stabilizer for curcumin (CUR)-loaded HIPEs. The results revealed that glycation increased YCP's surface hydrophobicity, exposing hydrophobic groups. This augmentation, along with steric hindrance from grafted glucose molecules, improved emulsifying properties, resulting in a thicker interfacial layer around oil droplets. This fortified interfacial layer, in synergy with steric hindrance, bolstered resistance to pH changes, salt ions, and thermal degradation. Moreover, HIPEs stabilized with glycated YCP exhibited reduced oxidation rates and improved CUR protection. In vitro digestion studies demonstrated enhanced CUR bioaccessibility, attributed to a faster release of fatty acids. This study underscores the efficacy of glycation as a strategic approach to augment the applicability of biomass proteins, exemplified by glycated YCP, in formulating stable and functional HIPEs for diverse food applications.


Subject(s)
Curcumin , Emulsions/chemistry , Curcumin/pharmacology , Curcumin/chemistry , Saccharomyces cerevisiae/metabolism , Maillard Reaction , Glucose , Particle Size
18.
J Hazard Mater ; 465: 133160, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38064948

ABSTRACT

Composite aerogels, formed by the combination of nanoscale polymers and highly efficient adsorbents, offer the potential to deploy adsorbent distinct separation properties into a processable matrix. This paper presents a method for the fabrication of low energy bio-aerogels with high ductility, excellent wet strength and favorable heat resistance, based on cellulose nanofibers (CNFs) bound by calcium carbonate particles (CaCO3) via a simple process of ice induction, cross-linking during freezing and freeze-drying. Due to induced defects, two-dimensional metal-organic layers (MOLs) were rich in mesoporous structure and embedded in the aerogel (AGCa-MOL), which exhibited a powerful adsorption capacity. AGCa-MOL could take full advantage of their hierarchical pores and available surface area to obtain high adsorption capacity (0.694-5.470 µmol/g) and rapid adsorption kinetics (5 min) for 14 heterocyclic aromatic amines (HAAs). Moreover, the CaCO3 particles and MOLs gave the AGCa-MOL excellent thermal stability, so that it could maintain excellent adsorption capacity at a high temperature (100 °C) and be applied as an adsorbent to remove HAAs in the boiling marinade. The intrinsic potential of composite aerogels was revealed due to the synergistic properties of the various components in the composite aerogel.

19.
Talanta ; 270: 125573, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38141469

ABSTRACT

The solid-phase microextraction (SPME) bias problem limits comprehensive analysis of volatile compounds in real samples. The study introduces dual mode unity solid-phase microextraction (DMU-SPME) as a novel SPME mode to achieve balanced extraction of both volatile and low-volatile compounds. The DMU-SPME method exhibits excellent linearity (R2 ≥ 0.994), low quantitation limits (0.12-240 µg/L), and notable stability (relative standard deviations below 20 % for both intra-day and inter-day analyses). In practical application to soy sauce, the DMU-SPME method identified a total of 107 compounds, encompassing all those detected by both headspace solid-phase microextraction (HS-SPME) and direct immersion solid-phase microextraction (DI-SPME). Theoretical insights indicate that DMU-SPME is less influenced by Kfs0 and Kfs in comparison to HS/DI-SPME, rendering it suitable for complex matrices containing both volatile and low-volatile compounds. In conclusion, DMU-SPME emerges as a highly effective extraction mode for analyzing volatile and low-volatile compounds in food, medical, and environmental samples.

20.
J Mater Chem B ; 12(1): 13-38, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38018424

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic and idiopathic condition that results in inflammation of the gastrointestinal tract, leading to conditions such as ulcerative colitis and Crohn's disease. Commonly used treatments for IBD include anti-inflammatory drugs, immunosuppressants, and antibiotics. Fecal microbiota transplantation is also being explored as a potential treatment method; however, these drugs may lead to systemic side effects. Oral administration is preferred for IBD treatment, but accurately locating the inflamed area in the colon is challenging due to multiple physiological barriers. Nanoparticle drug delivery systems possess unique physicochemical properties that enable precise delivery to the target site for IBD treatment, exploiting the increased permeability and retention effect of inflamed intestines. The first part of this review comprehensively introduces the pathophysiological environment of IBD, covering the gastrointestinal pH, various enzymes in the pathway, transport time, intestinal mucus, intestinal epithelium, intestinal immune cells, and intestinal microbiota. The second part focuses on the latest advances in the mechanism and strategies of targeted delivery using oral nanoparticle drug delivery systems for colitis-related fields. Finally, we present challenges and potential directions for future IBD treatment with the assistance of nanotechnology.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Humans , Drug Delivery Systems/methods , Nanomedicine , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Colitis, Ulcerative/drug therapy , Inflammation/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...